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University of Technology Chemnitz-Zwickau, Institute for Physics, PO Box 964, D-09107 
Chemnite, Germany 

Received 4 October 1994 

Abstract. We calculate the electrical conductivity o of thin fi lm where volume as well as 
surface scattering processes may occur. The latter arise from surface roughness and will be 
described in terms of the speculxity parameter (sP). This concept, originally introduced by Fuchs. 
is generalized to a quantum-mechanical approach via the derivation of an sP-dependent m i t i o n  
rate. Since various angle-dependent SPS can be deduced from a microscopical description of the 
surface profile, our theory accounts in a very general mmner for the interrelation between surface 
propmies and resulting conductivity. If surface scattering is the dominant effect, we find a power 
law o,(d) - dm, where d is the thickness. Different exponents a of about two to three result 
from small or large mughess correlation lengths, respectively. and are of relevance in view 
of experimental data, lw. For the combined action of volume and weak surface scatteren the 
theory predicts a wide applicabilily of a conductivity formula of FuchsSondheimer type. This 
is confirmed very well by experiments on extremely thin films revealing quantum size-induced 
oscillations of th8 conductivity superimposed on an overall behaviow os@) - d .  

1. Introduction 

The electrical conductivity of thin metallic films is determined by the simultaneous 
occurrence of surface scattering and scattering within the film. The latter effect gives 
rise to a finite mean free path 1 (MFP) in the unbounded bulk. The surface contribution 
to the resistivity is attributed to surface roughness and gains importance as the thickness 
of the film d approaches the MFP (classical sizeeffect regime) or, for even thinner films, 
as the thickness is comparable to the Fermi wavelength h~ of the electrons (quantum size 
effect regime). In correspondence to these different regimes, theoretical descriptions of the 
influence of the surface on the conductivity are given in the framework of classical physics 
or quantum mechanics, respectively. The most important classical model was developed by 
Fuchs in 1938 [I]. His investigation is based on the Boltzmann equation where the surface 
is incorporated via boundary conditions on the velocity distribution function. In particular, 
a single parameter p defines the fraction of conduction electrons reflected specularly at the 
surface, the remainder being scattered diffusely. Thus, p varies from unity for completely 
specular reflection to zero for completely diffuse scattering. In this sense, the classical 
approach is not restricted to weak roughness. 

The specularity parameter (SP) p introduced originally by Fnchs is independent of 
the canier’s angle of incidence 8 ,  i.e., this phenomenological quantity contains no direct 
information about the microscopic scattering mechanism itself. Guided by theoretical 
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considerations or experimental data, however, a number of angledependent SPs p ( 0 )  have 
been proposed [Z, 3, 4, 5, 61. These parameters depend on the microscopic properties 
of the surface. For instance, in a geometrical description of roughness, the SP will be a 
function of the mean square root deviation h of the height of the surface irregularities and 
their correlation length 6 ,  see section 4. Alternatively, roughness can be represented by 
scatterers that are distributed randomly over the surface 17, 61, see also [SI. Of course, one 
can imagine further models that yield a parameter for reflection in the specular direction in 
terms of properties of the surface. So, the introduction of an SP represents a very general 
and variable concept. Despite its limitations it provides a simple way of understanding and 
an analytically compact formulation of the interrelation between the surface profile and the 
resulting surface-roughness scattering. 

The confinement of electrons in ultrathin films gives rise to a discretization of 
energy levels and thus renders necessary a quantum-mechanical description [9, 10, 1 I]. 
Different approaches have been proposed in order to incorporate surface-roughness scattering 
[12, 13, 10, 14, 15, 71. Generally, however, they are restricted to the case that roughness 
represents a small perturbation only. In this limiting case, the system of lateral modes or 
eigenfunctions remains unchanged and scattering leads only to non-zero transition rates, i.e., 
the calculation of these rates is the central problem for a quantum-mechanical theory to be 
solved. The quantum-mechanical investigations lead to a very pronounced dependence of 
theconductivity on the thickness and it is very likely that only these results can account for 
some experimental data in ultrathin films. 

In this paper we show how the SP~concept can be introduced into a quantum-mechanical 
formalism. The resulting theory renders possible a clear and largely analytical discussion 
of different limiting cases which are usually evaluated numerically only [12, 14, 151. As an 
example, we study the behaviour of the conductivity in films with a weakly or a strongly 
correlated surface profile, i.e., f k p  < 1 and 6kF >> 1, respectively, where kF is the Fermi 
wavevector. Furthermore, parameters p ( 0 )  already used to describe classical size-effect 
data can be employed beyond this regime. In this respect, our generalization may be useful 
for experimentalists. Finally, our theory explains a rather surprising experimental result: in 
experiments which have revealed quantum size-effect oscillations of the conductivity the 
overall behaviour of the conductivity has been satisfactorily fitted by the FuchsSondheimer 
approximation for thick films 116, 171. This asymptotic expression should be valid for d >> 1 
only and yields for the surface part of the conductivity the relation os - d. The fact that 
no deviations from this classical formula appear results from a relatively smooth surface 
profile and requires the simultaneous occurrence of both surface and volume scattering. 

The introduction of an angle-dependent SP requires the derivation of a corresponding 
transition rate, or, in our language, damping quantity. For weak roughness, this can be done 
straightforwardly employing familiar classical ideas and the transition from a continuously 
varying angle of incidence to its discrete analogue. The discretization of the angle of 
incidence is physically reasonable but a heuristic procedure, of course. A more elaborate 
derivation can be given in terms of the Green functions in a thin film. Up to linear order 
in (1 - p )  << 1, we find the same roughness-induced transition rate. Although our paper is 
restricted to this weak-roughness case, this Green-function approach may lead to a quantum- 
mechanical theory including strong surface scattering, too. 

The outline of the paper is as follows. In section 2 we summarize some formulae 
for the damping quantities, the conductivity, etc which we have derived and discussed in a 
recent paper [I 11, including volume scattering only. Later on, roughness-induced damping is 
introduced. In section 3. we give only a semiclassical derivation of this quantity whereas the 
Green-function approach is outlined in the appendix. Some examples for angle-dependent 
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SPS are given in section 4. In section 5, the resulting behaviour of the conductivity is 
discussed qualitatively and numerical calculations are presented. Finally, section~d is used 
for a summary. 

2. Basic formulae-volume scattering 

The propagation of electrons can be described by the one-particle Green function. ,In a film 
with smooth surfaces, the Green function obeys the differential equation 

(1) 

where we have assumed hard-wall boundaries. k is the medium wave number. The presence 
of configurationally averaged volume scatterers gives rise to an imaginary part Im k2 > 0 
and is responsible for the attenuation of the coherent wave field [18]. The loss quantity is 
related to the local density of states according to [19] 

[A + k 2 ( r ) ]  G(T,  T') = -S (T  - T') GIs&-,= 0 

Imk2(r) = (4n / l ) ImG(r ,  T') (2) 

where I is the mean free path associated with volume scattering in the unbounded 3D bulk. 
G(T,  T') can be represented in its most general form as a double sum over all lateral modes 
of the film [ZO]. For sufficiently weak scattering (i.e. k ~ 1  >> l), however, we may restrict 
ourselves to the diagonal elements only because the non-diagonal ones are negligible 1191. 
Thus, equation (I) is solved by 

(3) 
i m  G(T,T')  = --Csin(K"z)sin(K~z')H~')(p.IR- R'I) 

r - ( R , z )  O G z G d .  
2 d A  

The lateral wave number is given by K,, = nn/d and H," is the Hankel function of first 
kind and zeroth order [21]. While the general form of the (2D) in-plane propagation is fixed 
by H t ) ,  the properties of the individual modes are determined by the corresponding wave 
numbers pa. We find for these quantities 

(4) 2 
P: = ( k Z h  - K. 

(k')",, = (2/d)Scdz sin (fcnz)k2(z) sin (~"2) .  
0 

In the weak-scattering limit, the real part of the matrix element (k').. is approximated 
sufficiently by Re (k'),, x k z  and thus Rep: k: - K ~ .  The imaginary part Imp: is 
the characteristic damping quantity (or, except for a factor Film, transition rate) for each 
subband. Inserting equation (2) into formula (4) we obtain - 

CO 

Imp: = ( % / d l ) E ( l  + [@(Repi)  - n-'tan-'(Impi/Repi)] (5) 
m=1 

where 0 is the step function. Formulae (5) constitute an infinite system of non-linear 
equations. As discussed in [ll], its solution yields the damping quantities with self- 
consistent level broadening. If we neglect these smearing effects, tan-'(Im &/Rep;) -+ 0, 
we find the usual result for volume-scattering-induced damping [9, 101 

Imp: = (z/dl)(& + f )  n < n, (6) 
where n, = int [ k ~ d j n ]  is the number of conducting modes. For the purpose of this paper, 
we will often use this simple approximation instead of the exact expression (5). 
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The real and imaginary parts of pi determine entirely the electrical conductivity 

e' n' RepZ 
u (d )=  --E-! 

2nhd ll=l Imp:' (7) 

Inserting the expression for Rep: and Imp: from equation (6) into the latter formula 
and taking the limit of thick films, n, - d -+ 03, we get the (Drude) conductivity 
ob = eZk$i/3rzh for the bulk system. 

3. Roughness-induced damping 

We assume that volume and surface scattering are weak enough to affect independently the 
electron's propagation process. Then, the corresponding damping quantities (or transition 
rates) are additive, i.e., surface roughness merely gives rise to an additional term AImpi 
on the right-hand side of (5) or (6), respectively. According to AImpt = kF/Zn, this 
roughness-induced quantity defines a specific MFP l ,  for each individual mode. In a 
classical framework, a MFP similarly determined by surface scattering can be derived 
in terms of the SP as follows [22]. In a relatively smooth film, (1 - p ( 0 ) )  < 1, a 
carrier can undergo a series of specular reflections until it is scattered diffusely at the 
surface. The angle of incidence (and 
reflection), i.e. the angle 0 between the carrier velocity and the surface normal, varies 
from zero (normal incidence) to n/2 (grazing incidence). The probability for a path of 
length L with a series of i consecutive reflections is given by P(L) = p' (0) .  Because 
i % Lcos0/d one obtains P ( L )  = exp(Lcos0lnp(0)/d). Thus, as well known from 
volume scattering, P(L)  obeys an exponential law and defines via P ( L )  exp (-L/l(@)) 
~ M F P  z(e) = (d/cos0)lnp-'(@). 

In a quantum-mechanical picture, the classical angle of incidence 0 has to be restricted 
to certain discrete values in accordance with the underlying discrete energy-level structure. 
Guided by the fact that the angle of incidence for a plane wave is given by the ratio of the 
normal component of the wavevector to its total length, we are led to the discretization rule 

(8) 
and thus Z(0) -+ Z(0,) = I,. Formula (8) is not only physically appealing but can be 
confirmed by better founded investigations, too, cf. the appendix. 

Each reflection occurs with probability p(0 ) .  

cos0 + cos0. = Kn/kF = na/dkf 

Combining the results of this simple exercise we obtain for the wanted quantity 

(9) 
nn nn 

AImpi = - Inp-'(0,) % -(I - ~ ( 0 . ) ) .  
d2 d2 

For the assumed weak surface scattering, this expression is approximated by the term on 
the right-hand side. The roughness-induced damping quantity (9) renders possible the 
incorporation of different angle-dependent SPs in a uniform manner. For surfacedominated 
scattering, it determines directly the resulting conductivity. Generally, however, both surface 
and volume scattering contribute to the total damping and account for a finite conductivity. 
It is noteworthy that while their damping quantities simply add, the total resistivity is not 
additively composed of two separate contributions. This is a consequence of the explicit 
dependence of the roughness-induced damping (9) on the mode index n. Remember that the 
corresponding volume quantity (5) is at least approximately (cf. equation (6)) independent 
of n in agreement with the assumed isotropic volume scattering. 

As already mentioned in the introduction, rough surfaces can be considered in a Green- 
function approach, too (see appendix). In the limit of weak surface scattering, the damping 
quantity (9) is confirmed by these calculations. 
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4. Some specularity parameters 

To illustrate the application of formula (9) let us consider three different SPS, namely 

been introduced by Fuchs [ l ]  and deserves no comment. The next was derived~in [6] and 
reads explicitly 

p = constant, 1 - p(e) - case and 1 - p(e) - cos2e. The constant S P  has already 

2Jz 
3 

p(e) = 1 - -Ns,cose. (10) 

In this paper [6] roughness is modelled by surface scatterers, scattering cross-section So each, 
that are distributed uniformly and uncorrelatedly with mean density N. The third SP can be 
found employing the model of a continuously corrugated surface that is described by a profile 
function h ( R ) .  A small amplitude of height deviations requires hkF << 1, h' = (h(R)'), 
where (. . .) denotes the configurational average. In this limiting case, the scattering of 
waves at the srrrface profile h(R)  can be calculated by the well known perturbation method 
[23, 24, 25, 261. This approach yields for the reflection coefficient for scattering in the 
specular direction the general formula [25] 

p(B) = 1 - 4kphZ cos0 Re d'q C(k! - q)Jk:-4. s (11) 

where 

is the Fourier transform of the correlation function C(R) ~= h-'(h(R')h(R' + R)) and 
coszB = 1 - (ki)'/k;. To proceed, C ( R )  has to be specified. A commonly used ansafz is 
C ( R )  = exp ( -R2/C2) ,  i.e.. the correlation function is approximated as Gaussian [25, '141. 
: is the roughness correlation length. Inserting this ansarz in (12) and (ll), the SP p(B) can 
be calculated analytically in the limit of small or large f ,  respectively, 

p(B) = 1 -~$k;h2f2cosB fkF << 1 ( 1 3 4  

p(B) = 1 - (2kph)'cos'B CkF >> 1. (1%) 

The differences in p resulting from different values of ( are enhanced for grazing incidence 
(e + x /2 ) .  As regards metals, the range of medium or even large parameters { k ~  should 
be of interest. 

In the long-wave limit, formula (13n), the electrons do not resolve the internal structure 
of the surface irregularities. The portion of diffusely scattered carriers is determined by 
the mean area - fz  that a correlated region of the surface profile covers. Consequently, 
a further reduction of the rather small quantity 6 in equation (13n) causes the SP p(0) to 
increase. 

The SPS (13a) and (10) are both of type 1 - p ( 0 )  - cos e. This agreement is reasonable 
if we bear in mind that the latter one relies on.the assumption of uncorrelated surface 
scatterers. A comparison of both results yields the simple relation n-'k'$252 = N S ,  
between the parameters used. Thus, in  the following we may refer likewise to either of 
them. Finally, we remark that the SP (13b) can be considered as an expansion of  Soffer's 
result 141 p(B) = exp[-(2kFh~osQ)~] in the limit of small hkF << I .  

. 
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S. Conductivity 

At the beginning of this section we discuss qualitatively the inffuence of the different SPs 
on U .  For this purpose, the volumescattering-induced damping quantity (5)  is sufficiently 
approximated by expression (6). The SPS are included via formula (9). 

(a )p  = constant. In this case the total damping is given by 
k nk 

d2 
Substituting this expression into equation (7), we find for the film conductivity 

Imp; = z(nc + +) + -(I - p).  (14) 

where x E kpdjn. For thick films, n, >> 1, the summation in formula (15) can be replaced 
by an integration leading to the asymptotic expression on the right-hand side. Obviously, this 
is just the well known Fuchs-Sondheimer approximation. Thus, our quantum-mechanical 
approach reproduces exactly the corresponding classical result in,the limit of a large number 
of conducting modes when the discretization of the energy levels can be neglected. 

For vanishing volume scattering, 1 + m, the surface-dominated conductivity is 
determined by the remaining term of equation (E), namely En n-'. For n, >> 1, one gets 
us(d) - dln(dkF). In a classical framework the Fermi wavelength is negligible compared 
with the film thickness so that we find the typical logarithmic singularity 111. 

(b)l - p(6') - cos6'. This is the Case of comlation lengths f which are small compared 
with kp. The SP is explicitly given by equation (10) or ( I ~ u ) ,  respectively, leading to a 
roughness-induced damping AImp; - nz/d3. Except for a slightly different choice of 
parameters, an identical rate has been found in [lo]. The resulting conductivity attributable 
to surface roughness reads 

i.e., u8 rises faster than in the case considered above. The dependence on the correlation 
length is given by 0; - 5-2, cf. the discussion of the SP (13n) in the preceding section. 

Generally, the conductivity is determined by the simultaneous occurrence of both volume 
and surface scattering. Then, for a large number of conducting modes, we find again a result 
of Fuchs-Sondheimer type 

Comparing the asymptotic formulae (IS) (RHS) and (17) one can identify the quantity 
(16/45)k$h2p2 with the fraction 1 - p of diffusely scattered carriers in the Fuchs theory. 
This agrees with the result of Rodewald and Appel (formula (23) in [27]). Alternatively, 
employing the model of scatterers that are distributed on the surface, the constant SP can be 
expressed in terms of the quantity NS, according to 1 - p = (16?r/45)NSO NS,. This 
equation confirms previous results by Lenk and Knabchen 161 and Kunze [7]. 

(c)l - p ( @ )  - cos2@. The remaining case is characteristic for large correlation lengths 
kF.5 >> 1. Here, we obtain an even more pronounced dependence of the surface-dominated 
conductivity on the thickness, namely us - d3. On the other hand, the combined action of 
surface and volume scatterers leads to 

( d )  1 2 2 1  - % 1 - -kFh - d >> 1. ob 2 d  
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This result is again of Fuchs-Sondheimer type 

According to the found interrelation between the SP and the corresponding surface- 
dominated conductivity ( 1  - p ( 0 )  - cosn-' 8 leads to us(d) - d=), we can conclude that 
the smoother the surface is, the stronger rises 0; with increasing thickness. On principle, 
even higher power laws than os(d) - d 3  might occur for good-quality films. This is in 
agreement with experimental data, cf. references in [7]. However, we have to bear in mind 
that these power laws are restricted by volume scattering to a narrow region of very small 
d .  In other words, as the surface influence decreases rapidly the volume contribution to the 
resistivity becomes dominant, i.e., one has to study U instead of 0;. The general form of U 

can be written as 

where nc + from equation (6) is approximated by x and c < 1 denotes the various 
prefactors belonging to the SPS. a runs from one to three for the SPS (14), (IO) or (13a) 
and (13b), respectively. Formula (19) allows a simple evaluation in the case of thick films 
( l / d  << 1)~when it3 denominator, as a quantity close to unity, can be expanded. In this way, 
all asymptotic expressions ((15), (17) and (18)) have been derived. 

Independent of l / d ,  the sum (19) is dominated by terms with large numerators, i.e., only 
lower modes n contribute significantly. Classically, these contributions can be assigned to 
particles moving almost parallel to the surfaces (0 5 3~12). Because of the small normal 
component of their wavevector they are very sensitive to the surface~profile. This property 
is retained in the analytical description because a larger portion of specular reflection (a 
higher value of a )  results in a drastically reduced factor (n ix)=  for these carriers. So. the 
denominator in equation (19) remains, even for I 2 d, a quantity close to unity justifying the 
aforementioned expansion. Again, this procedure leads to formulae of Fuchs-Sondheimer 
type. We find therefore that for very smooth films with a highly correlated surface profile, 
the quantum-mechanically calculated Conductivity is well approximated by the classical 
asymptotic expression even if the ratio l / d  is not small compaYed to unity. Indeed, a broad 
applicability of the Fuchs-Sondheimer approximation has just been found in experiments 
where the appearance of quantum size-induced oscillations of the conductivity gives rise to 
the assumption of high-qtkality layers [16, 171. The validity of the classical approximation 
is proved by measuring a surface conductivity O;(d) = [U-'@) -U;']-' - d .  

At the end of this section let us discuss some results calculated numerically, see figure 
1. Now, the volume-induced damping is described by the exact formula (5 )  including 
both propagating and evanescent modes as well as level-broadening effects, cf. [ill. Up 
to this point, however, the damping (9) attributed to surface roughness was merely used 
for the propagating modes n ,< n, only. To broaden its range of applicability we have to 
generalize the discretization rule (8) to modes n > n,. An evanescent wavefunction has 
only a propagating component normal to the surface. Accordingly, we have assumed that 
8, = 0 (normal incidence) can be assigned to all of these modes. Of course, this is a purely 
heuristic reasoning but for the sake of brevity we should restrict ourselves to this argument. 
It can be detailed that this rule is mathematically consistent. too ([28] and cf. the appendix). 

Now, taking into account this generalization of equation (8) we can form a total damping 
quantity Imp.: comprising the volume terms (5)  and a roughness~contribution. For the SP 
(IO), the resulting system of equations has been solved numerically. Then, according to 
formula (7), the obtained values for Im fi: determine the conductivity which is plotted in 
figure 1. As can be seen roughness changes considerably the behaviour of U for a small 
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1.0 - 

U - 
a --- NSo  = 0 

- N S ,  = 0.04 
- NS, = 0.1 

0.0 I I I I I I I I I I I 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

d b / r  
Figure 1. The reduced conductivity (7) is shown for a smooth and two rough layers. The angle- 
dependent specularity parameter is given by equation (IO) and includes either the roughness 
parameter NS, or, equivalently, the quantity z " ' k ~ h z ~ 2 ,  cf. section 4. The damping due to 
volume swtterers is determined by the panmeter IkF = 90. 

number of conducting modes whereas the curves are only shifted below that of a smooth 
layer (NS, = 0) for higher values of n,. In additioq the magnitude of the quantum size- 
induced oscillations is reduced. This~effect is associated with level broadening (included in 
equation (5)) which is strongly enhanced for increasing scattering processes. In this respect, 
figure 1 confirms results found in a previous paper on volume scattering in thin films [ll], 
namely that level broadening effects may drastically suppress the oscillatory behaviour of 
the conductivity, i.e., the clear manifestation of the quantum size effect. 

6. Summary 

It is the aim of this paper to put forward a basically quantum-mechanical theory of the 
conductivity in thin films where volume- as well as surface-scattering processes are taken 
into account. In paticular, the latter are described by use of Fuchs's classical specularity 
parameter (sP). The main problem to be solved is the calculation of a corresponding, i.e. SP- 
dependent, damping quantity. Two separate derivations have been given, see section 3 and 
the appendix, respectively, in order to confirm the damping quantity used here. Nevertheless, 
it is obvious that this kind of approach involves some heuristic or semiclassical arguments. 
On the other hand, our theory has the advantage that, via the SP, different characterizations 
of surface roughness can be used straightforwardly in calculating the conductivity. In 
section 4 we have summarized, e.g., how to derive an SP from a geometrical description 
of the surface profile. One can introduce other SPs, too, or, in n e w  of section 4, just 
employ a different roughness correlation function C(R) to find further parameters p ( @ .  
By virtue of this freedom, the theory provides a relatively comprehensive understanding of 
the interrelation between surface properties and resulting conductivity. So, we find for the 
surface-dominated conductivity the typical power law q ( d )  - d'. The exponent a depends 
on the quality of the film: the smoother the surface is, the larger is a, i.e., the faster rises 
the conductivity with increasing thickness. For the more realistic, i.e. angle-dependent SPs 
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employed in this paper, CY varies from two for uncorrelated or weakly correlated surface 
irregularities (k& << 1) to three for surface profiles exhibiting a rather large correlation 
length (kF< >> I ) .  In accordance with this range, a number of experimental data are 
available that suggest [Y % 2. For CoSiz layers, e.g., Badoz et al 1291 and Henz et a1 1301 
have found us(d) - d2.3 and us(d) - d’.9, respectively. For thin Sn films, Orr et al [31] 
repofled us - d Z  (with a transition to U - d for larger thicknesses, cf. below). 

A different behaviour u(d)  arises from the combined action of surface and volume 
scatterers. Here, we have shown that weak surface scattering leads to a conductivity of 
Fuchs-Sondheimer type even if the condition this classical approximation is actually based 
on is not fulfilled. Accordingly, the formula ~ 1 %  = 1 - constant x l l d ,  similar to the 
original Fuchs-Sondheimer expression, should be widely applicable in experiments where 
films with a very smooth surface structure are grown 1321. In this sense, the occurrence 
of quantum size-effect oscillations of the conductivity may reasonably be accompanied hy 
a mean conductivity obeying the classical asymptotic behaviour. Indeed, a quantum size- 
induced oscillatory behaviour of U has been reported in experiments [17, 161 where the 
data could satisfactorily fitted by the FuchsSondheimer approximation. For instance, the 
measurements by Jatochowski etnl (161 show that also the conductivity for extremely thin 
films (from 0.1 to about 1 nm) agrees with this classical formula if modulations due to the 
quantum size effect and a periodically varying roughness (resulting from the layer-by-layer 
growth mode) are taken into account. This compatibility of the classical approximation 
with quantum size effects is strange at first glance and, to our knowledge, has not yet been 
discussed theoretically. 

A conductivity of FuchsSondheimer type is fixed hy a single roughness parameter. 
In the original theory it is given by the phenomenological constant 1 - p ,  see the right- 
hand side of equation (15). Employing the angle-dependent SPS (15) we have derived the 
formulae (17) and (181, respectively, in which this parameter is determined by more realistic 
quantities characterizing the microscopic surface profile. Besides this improvement itself, 
these formulae have the advantage that the used quantities are not subject to the restriction 
in Fuchs’s model where 0 4 1 - p < 1 has to be fulfilled. As a consequence, data giving 
rise.to negative p values in the classical theory [16,33, 34,351 can he described by applying 
the proposed one, and values of the microscopic parameters can be extracted. 

In concluding this paper we remark that the Green-function approach outlined in the 
appendix may be used for a theory that is not restricted to weak roughness only. Calculations 
along these lines will be left for the future. 

,. 
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Appendix. Green-function approach 

Equation (3) gives only one representation for the Green function in a film. Equivalent 
formulae can be found. One of them, useful in view of the incorporation of an SP, can be 
derived by considering all paths that contribute to the propagation of waves from a source 
point T’ to T .  The real paths include an increasing number of reflections at the surfaces but 
may he substituted by straight ones leading from a suitable chosen fictitious source point 
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outside the layer to r. This so-called image-potential method yields for the Green function 
the representation 

m 

G ( r ,  T’) = G b ( T ,  T’) f c ( - 1 ) “  [G:(T,  T‘) + G l ( T ,  T‘)] (AI) 
m=l 

with 

G;(T,  T’) = Gb(dIR - R’1’ + ((m ?c 1)d F z F z’ )~)  

G $ ( T .  T‘) = Gb(J IR-  R’1’ + (md + Z f 2’)’) 
m odd 

m even. 

The first term in equation (Al) describes the direct propagation from T‘ to T and is given 
by the 3D (bulk) Green function G b ( T ,  T’) = Gb( lT-T’ l )  = ( ~ ~ I T - T ’ [ ) - ‘  expfikjr - 7‘1). 

The sum in equation (AI) contains all processes with one or more specular reflections at 
the film boundaries. The indices + and - refer to the order of these reflections, namely 
a Green function labelled + (-) describes a propagation process with a last reflection at 
the upper (lower) surface z = d ( z  = 0). The additional factor (-l)m may be attributed to 
the phase change by x associated with each reflection. Of course, as does (3). the Green 
function (Al) obeys the defining equations (1). 

Contrary to the original formula (3), the representation (AI) renders possible 
straightforwardly the use of an SP in order to describe the influence of statistically rough 
surfaces on the propagation process.  according to Fuchs [I], roughness reduces the fraction 
of specularly reflected carriers in favour of a diffuse component. In his model, this 
redistribution is determined by the SP p .  In our non-classical approach, the roughness- 
induced reduction of specular wave reflection can be introduced via an amplitude Jsr. A 
sequence of m reflections, in equation (Al) represented by G:, gives rise to an attenuation 
factor pmI2. Thus, we obtain 

m 

G ( T ,  T’) = G ~ ( T .  7’) + ~(-1)’”p”’’ [G:(T, T‘) + G,(T, T‘)] (AZ) 

for a Green function modified by surface roughness. The introduction of an angledependent 
SP p ( B )  into equation (AZ) is straightforward and merely requires us to weight the G: with 
individual factors pmlz(8:). For the sake of brevity, this generalized version is omitted. 

One can show that (AZ) and its generalization to p = p(B)  are consistently constructed 
in the classical limit when the discretization of the energy levels, the lateral dependence of 
the density of states etc are negligible. Indeed, employing a wave-superposition method, 
Fuchs’s theory has been reproduced using the Green function (A2) [28]. 

Our formalism given in section 2 relies on the use of quantities which characterize the 
individual modes, cf., e.g., equation (7) for the conductivity. The further application of 
the propagator (A2) requires therefore the transition to a lateral-mode representation. For 
p = 1, these calculations must reproduce formula (3), of course. The deviations, however, 
resulting from a p value smaller than unity are more interesting. 

The transformation of the Green function (AZ) is essentially based on the so-called 
Sommerfeld integral 1361 

m=l 
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This identity separates the lateral component from the 2D (in-plane) propagation process 
described by the Hankel function Hi’). Applying (A3) to all terms in equation (AZ), one 
obtains 

-m 

The function L(z,z‘) arises from the summation of all lateral contributions forming a 
geometrical series. Via the residue theorem, the integral over p can be evaluated by 
exploiting the fact that L has poles at 

(As) 

Because p = there are.two complex roots pn for each pole in. A single-valued 
correspondence is achieved by introducing a branch cut into the complex i,’ plane. This 
cut has to connect the two branch points =-cc but can, in principle, be 
chosen arbitrarily. The favourable branch cut runs from point -k2 along the negative real 
axis to infinity. This choice yields roots with a real part RepL. > 0, i.e. outgoing waves 
Ht)(pn[R - R’I), and guarantees that the branch cut does not interfere with the poles 
i,’ = -(nn/d)2 + ((lnp)/Zd)’ - inn(lnp)/d2. The points E,’ form a parabola with the 
apex (n = 0) on the positive real axis and extending (n -+ ko) to the left half space 
Rei; < 0. 

The integration in equation (A4) can be performed along a contour which is closed in 
the upper half space where Hi” vanishes exponentially. According to the residue theorem, 
the value of this integral is determined by the enclosed poles. The final result reads 

nn 1 
d 2d 

i n = - i - + - l n p  for n = O . i l . & Z  ,.... 

= -k2 and 

COSK,(Z -d/Z)cos~,(z’-d/2) n odd 
G(T ,  7’) = &T “=I  Hd ( e I R -  R‘I) [ s in~- (z  -d/Z)sin~,,(z’-d/Z) n even 

(-46) 
where K .  = i in = nn/d + (i/2d) In p .  AS can be seen from a comparison with equation (3). 
roughness changes the lateral term of the Green function. Additionally, complex values IC. 
occur. The total damping for each individual mode is given by Imp: = Im (k2 - K,’), i.e., 
we find the same roughness-induced damping 

(A7) 
~~ nn- 

d2 
- h K :  = AImp: = - - h p  

as in section 3, cf. formula (9). 
In~the weak-roughness regime, 1 - p << 1, the small imaginary part of K,, is of 

importance for ImK,’ only. The quantity Rep? is not changed since its additional term 
.., (lnp)’ - (1 ~ p)’ is of higher order. Also the modified lateral functions in equation 
(A6) do not influence the conductivity (7) [28]. The derivation of equation (7). based on 
the formula (3), is.given in [ I l l  and can be repeated with the Green function (A6). For 
1 - p << 1, these calculations confirm the conductivity (7) used in this paper. So, in linear 
order of 1 - p ,  the Green function (A6) yields only an enhancement of the intersubband 
transitions whereas the general formalism is not affected. This agrees exactly with the 
results one would expect from a first-order perturbational theory. 
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Finally, let us comment on the use of angle-dependent SPs. As noted above, our starting 
equation (A2) is readily generalized to functions p = ~(6'). The appearance of individual 
prefactors p'"/*(Q:) renders ineffective the application of (A3). However, assuming that the 
SP is given as a function of the cosine of the angle of incidence, p =  cost?), a generalized 
identity can be established 

On the left-hand side. the cosine is determined in real space. On the right-band side, it 
is expressed by quantities in momentum space, namely the ratio of the normal component 
of the wavevector to the total wavevector. Mathematically, formula (AS) is confirmed 
by the method of steepest descent. This method is a standard technique in evaluating 
integrals with Hankel functions 136, 371 and, therefore, the explicit calculations can be 
omitted. Its application relies  on the substitution of Hd') by the asymptotic expression 
m e x p [ i ( p R  - x / 4 ) ]  which is strictly justified in the limit of large arguments 
IpRl >> 1 only. In this sense, the method of steepest descent can only yield a partial 
proof of equation (AS). We believe, however, that (AS) is sufficiently precise beyond that. 
(Even for p = constant, when (AS) simplifies to the identity (A3), only a limited validity of 
formula (A8) would be anticipated from calculations with the method of steepest descent.) 

Applying formula (AS) to the Green function (AZ) with an angledependent SP, equation 
(A4) is re-found except that p is substituted by p(iE/k). The evaluation of this equation 
can be performed as described above. This procedure generalizes the roughness-induced 
damping (A7) to angle-dependent SPs and confirms the naive discretization rule (8). For 
1 - p(B) << 1, no further changes, compared to the case p = constant, arise. 
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